

Department of Biochemistry Mahatma Phule Krishi Vidyapeeth Rahuri-413 722, Dist. Ahmednagar (MS)

Master's Programme in Biochemistry

Course Layout

Minimum Credit Requirements

Sr. No.	Subject	Minimum credit(s)
1.	Major	21
2.	Minor	09
3.	Supporting	05
4.	Seminar	01
5.	Research	20
	Total Credits	56
	Compulsory Non Credit Courses	06

Sr. No.	Course Number	Course Title	Credits
	Iajor Subjects (M	(in. 21 credits)	
1	BIOCHEM 501	BASIC BIOCHEMISTRY	2+1=3
2	BIOCHEM 502	INTERMEDIARY METABOLISM	3+0=3
3	BIOCHEM 503	ENZYMOLOGY	2+1=3
4	BIOCHEM 504	MOLECULAR BIOLOGY	2+1=3
5	BIOCHEM-505	TECHNIQUES IN BIOCHEMISTRY	1+2=3
6	BIOCHEM 507	PLANT BIOCHEMISTRY	3+0=3
7	BIOCHEM 510	CARBON AND NITROGEN METABOLISM	2+1=3
		Total	15+6=21
B) M	B) Minor Subjects (Min. 9 credits)		
1	MICRO 501	MICROBIAL GENETICS	2+1=3
2	FST 523	NEUTRACEUTICALS AND HEALTH FOODS	2+1=3
3	PP 503	PHYSIOLOGICAL AND MOLECULAR RESPONSES	2+1=3

		OF PLANTS TO ABIOTIC STRESSES	
		Total	6+3=9
C) S	upporting Subject	s (Min. 5 credits)	
1	STAT 511	STATISTICAL METHODS FOR APPLIED SCIENCES	2+1=3
2	MBB 508	GENOMICS AND PROTEOMICS	2+0=2
		Total	4+1=5
D) S	Seminar (01 credi	t)	
1	BIOCHEM 591	MASTER'S SEMINAR	1+0=1
		Total	1+0=1
E) N	Aaster's Research	(20 credits)	
1	BIOCHEM 599	MASTER'S RESEARCH	0+20=20
F) No	on Credit Compul	sory Courses	
1	PGS 501	LIBRARY AND INFORMATION SERVICES	0+1=1
2	PGS 502	TECHNICAL WRITING AND COMMUNICATION SKILLS	0+1=1
3	PGS 503	INTELLECTUAL PROPERTY AND ITS MANAGEMENT IN AGRICULTURE	1+0=1
4	PGS 504	BASIC CONCEPTS IN LABORATORY TECHNIQUES	0+1=1
5	PGS 505	AGRICULTURAL RESEARCH, RESEARCH ETHICS AND RURAL DEVELOPMENT PROGRAMMES	1+0=1
6	PGS 506	DISASTER MANAGEMENT	1+0=1
		Total	3+3=6

Course Contents

BIOCHEM 501 BASIC BIOCHEMISTRY 2+1

Theory:

UNIT I

Scope and importance of biochemistry in agriculture; Fundamental principles governing life; structure of water; acid base concept and buffers; pH; hydrogen bonding; hydrophobic, electrostatic and van der Waals forces; General introduction to physical techniques for determination of structure of biopolymers.

UNIT II

Classification, structure and function of carbohydrates, lipids and biomembranes, amino acids, proteins, and nucleic acids.

UNIT III

Structure and biological functions of vitamins, enzymes classification and mechanism of action; regulation, factors affecting enzyme action. Hormones- animal plants and insects, Fundamentals of thermodynamic principles applicable to biological processes, Bioenergetics.

UNIT IV

Metabolism of carbohydrates, photosynthesis and respiration, oxidative phosphorylation, lipids, proteins and nucleic acids. DNA replication, transcription and translation; recombinant DNA technology

Practical:

Preparation of standard and buffer solutions, Extraction and estimation of sugars, Amino acids, Estimation of Proteins by Lowry's method, Estimation of DNA and RNA by phenylamine and orcinol methods. Estimation of ascorbic acid, separation of biomolecules by TLC and paper chromatography.

Suggested Readings:

Conn EE & Stumpf PK. 1987. *Outlines of Biochemistry*. John Wiley. Metzler DE. 2006. *Biochemistry*. Vols. I, II. Wiley International. Nelson DL & Cox MM. 2004. *Lehninger Principles of Biochemistry*. 4th Ed. MacMillan. Voet D, Voet JG & Pratt CW. 2007. *Fundamentals of Biochemistry*. JohnWiley.

BIOCHEM 501 BASIC BIOCHEMISTRY

2+1

2+1

Sr.	Name of the topics	No of	Weightage
No.		Lecture	(%)
1	Scope and importance of biochemistry in agriculture	1	3
2	Fundamental principles governing life	1	3
3	Structure of water, acid-base concept	1	3
4	Buffer and pH, hydrogen bonding, hydrophobic, electrostatic and van der Waals forces	1	4
5	Fundamentals of thermodynamic principles applicable to biological processes, bioenergetics	2	5
6	Classification, structure and functions of carbohydrates	1	5
7	Metabolism of carbohydrates	2	6
8	Electron transport chain and oxidative phosphorylation	1	6
9	Photosynthesis	2	6
10	Classification, structure and functions of lipids Metabolism of lipids	2	4
11	Classification, structure and functions of amino acids and proteins. Metabolism of proteins	2	6
12	Structure, biological functions and classification of vitamins	1	4
13	Enzyme classification, factors affecting on enzyme action	1	4
14	Mechanism of enzyme action	2	4
15	Regulation of enzyme activity	1	4
16	Hormones: animals, plants and insects	2	4
17	Structure and functions of nucleic acids	1	5
18	Metabolism of nucleic acids	2	5
19	DNA replication	1	5
20	DNA transcription	2	4
21	Translation	2	5
22	Recombinant DNA technology	1	5
	Total	32	100

Teaching Schedule (Theory)

BIOCHEM 501 BASIC BIOCHEMISTRY

Lecture No	Name of the topics
1	Scope and importance of biochemistry in agriculture-Origin of
	biochemistry, details of the contributions of various biochemists
2	Fundamental principles governing life-Cellular foundation, chemical
	foundation, physical foundation, genetic, evolutionary
3	Structure of water-Physical and chemical properties of water, suitability of

	water as a solvent for a living cell, acid-base concept
4	Buffers and pH, bonds and various forces-Definition of buffer, suitability
	of buffer for various bimolecular extractions, strength and molarity of
	buffer, definition of pH, Handerson-Hasselbalch equation, hydrogen
	bonding, hydrophobic bond, electrostatic bond, van der Waals forces,
5	Fundamentals of thermodynamic principles applicable to biological
	processes, bioenergetics, entropy, enthalphy, Gibbs equation
6	Classification, structure and functions of carbohydrates
7	Metabolism of carbohydrates- glycolysis, TCA cycle, pentose phosphate
	pathway, glyoxylate cycle, sucrose synthesis, glucose and fructose
	synthesis
8	Electron transport chain and oxidative phosphorylation
9	Photosynthesis-structure of chloroplasts, photosystem I and photosystem
10	II Classification structure and functions of linids
	Classification, structure and functions of lipids
11	Metabolism of lipids- β -oxidation of fatty acids, synthesis of fatty acids by
10	acyl carrier protein
12	Classification, structure and functions of amino acids and proteins
13	Metabolism of proteins: protein degradation and protein synthesis
14	Structure, biological functions and classification of vitamins
15	Enzyme Classification, factors affecting enzyme activity: substrate
	concentration, enzyme concentration, temperature and pH
16	Mechanism of enzyme action : Ribonuclase A, chymotrypsin, lysozyme
17	Regulation of enzyme activity- Allosteric enzyme, covalent modification,
	kinetic properties of enzymes, proteolytic cleavage of enzymes
18	Hormones: animals, plants and insects-Diverse structure & functions,
	action through specific high affinity cellular receptors, insulin, glucagon,
	epinephrine.
19	Structure and functions of nucleic acids-double helix structure of DNA,
20	nitrogenous bases, DNA as the genetic material.
20	Metabolism of nucleic acids-nucleotide synthesis
21	DNA replication
22	DNA transcription
23	Translation of genetic information
24	Recombinant DNA technology-Total RNA isolation, cDNA synthesis,
	cloning of cDNA in a vector

BIOCHEM 501 BASIC BIOCHEMISTRY 2+1

Lesson Plan (Practical)

Sr.	Name of the practical	No.	Weightage
No.		of practical	(%)
		classes	
1.	Preparation of standard and buffer	2	10
	solutions		
2.	Estimation of reducing sugars by Nelson-	1	12
	Somogyi method		

3.	Estimation of free amino acids by	1	12
	ninhydrin method		
4.	Estimation of protein by Lowry method	2	15
5.	Isolation of DNA and its quantification	3	15
6.	Estimation of ascorbic acid	1	12
7.	Isolation of RNA and its quantification	2	12
8.	Separation of amino acid by TLC	2	8
9.	Separation of amino acids by paper	2	4
	chromatography		
	Total	16	100

BIOCHEM 502

INTERMEDIARY METABOLISM

3+0

Theory:

UNIT I

The living cell a unique chemical system, Introduction to metabolism, methods of studying metabolism, transport mechanism, bioenergetics, biological oxidation, signal transduction.

UNIT II

Catabolic and anabolic pathways of carbohydrates, lipids, regulation and their metabolic disorders. Energy transduction and oxidative phosphorylation.

UNIT III

General reactions of amino acid metabolism, Degradative and biosynthetic pathways of amino acids and their metabolic disorders. Sulphur metabolism, Metabolic engineering concepts.

UNIT IV

Compartmentation of metabolic pathways, metabolic profiles of major organs and regulation of metabolic pathways.

Suggested Readings:

Berg JM, Tymoczko JL, Stryer L & Clarke ND 2000. *Biochemistry*. 5th Ed. WH Freeman Metzler DE. 2006. *Biochemistry*. Vols. I, II. John Wiley.

Voet D, Voet JG & Pratt CW. 2007. *Fundamentals of Biochemistry*. John Wiley. Zubey GL. 1998. Biochemistry. 4th Ed. WCB London.

BIOCHEM 502 Intermediary Metabolism 3+0

Teaching Schedule (Theory)

Sr. No.	Name of the topics	No of Lectures	Weightage (%)
1	The living cell, unique chemical system, introduction	02	7
	to metabolism, methods of studying metabolism.		
2	Transport mechanism	02	5
3	Bioenergetics, biological oxidation	05	10
4	Signal transduction	02	6
5	Catabolic and anabolic pathways of carbohydrates,	08	15
	regulation and their metabolic disorders.		
6	Catabolic and anabolic pathways of lipid, regulation	07	12
	and their metabolic disorders		
7	Energy transduction and oxidative phosphorylation	05	10
8	General reactions of amino acid metabolism	02	5
9	Degradative and biosynthetic pathways of amino acid	05	10
	their metabolic disorders.		
10	Sulphur metabolism	02	5
11	Metabolic engineering concepts	02	5
12	Compartmentation of metabolic pathways	02	5
13	Metabolic profiles of major organs and regulation of	04	5
	metabolic pathways.		
	Total	48	100

BIOCHEM 502 Intermediary Metabolism 3+0

No. of	Name of the topics
Lecture	
1	The living cell, unique chemical system
2	Introduction to metabolism: catabolism and anabolism, methods of studying
	metabolism-types, regulation
3	Transport mechanism: Introduction to membrane, membrane permeability,
	passive transport.
4	Active transport: ATP-driven active transport, action of Na ⁺ /K ⁺ -ATPase,
	ion driven transport, glucose transport into intestinal epithelial cells,
	glucose rehydration therapy, exocytosis, endocytosis, picocytosis, receptor
	mediated- endocytosis.
5	Bioenergetics: General concepts of thermodynamics, free energy, enthalpy

	and entropy	
6	Exergonic and endergonic reaction, their coupling.	
7	Equilibrium constant	
8	$\Delta G, \Delta G^0$	
9	High-energy compounds	
10	Signal transduction: cell signaling hormones	
10	Cell- surface receptors, secondary messengers	
11	Carbohydrate metabolism: Glycolysis, fates of pyruvate, inhibitors of	
12	glycolysis and regulation of glycolysis	
13	TCA cycle and its regulation	
13	Gluconeogenesis, glyoxylate cycle,	
15	Glycogen metabolism, glycogenesis, glucogenolysis	
16-17	Starch synthesis, sucrose synthesis, interconversion of starch and sucrose	
10 17	and its regulation	
18	HMP shunt, Entner-Doudoroff pathway	
10	Regulation of carbohydrate metabolism	
20	Lipid metabolism: Fatty acid oxidation: β -oxidation in mitochondria,	
20	oxidation of palmitate, oxidation of odd chain of fatty acids	
21	Oxidation of unsaturated fatty acids (one double bond and two double	
	bond)	
22	β -oxidation of fatty acids in peroxisomes, regulation of fatty acid oxidation	
23	α -and ω -oxidation of fatty acids, formation of ketone bodies	
24	Biosynthesis of fatty acids and regulation	
25	Elongation of saturated fatty acids, desaturation of fatty acid chain	
26	Biosynthesis of triacylglycerol, metabolism of phospholipids, synthesis of	
	spingolipids, degradation of spingomyelin	
27	Energy transduction and oxidative phosphorylation: Redox potential,	
21	electron transport from NADH	
28	Formation of an H^+ gradient, electron transport from FADH ₂ , electron	
20	transport inhibitors	
29	Oxidative phosphorylation, ATP synthesis as a rotatory engine	
30	Coupling and respiratory control,	
31	Uncouplers, reoxidation of cytosolic NADH	
32	Overview of catabolism of amino acids, urea cycle, metabolic fates of	
52	amino groups	
33	General aspects of amino acid metabolism (transamination and	
55	deamination)	
34-35	Pathways for amino acid degradation: ten amino acids degraded to acyl	
	CoA five amino acids are converted to α -ketoglutarate, four amino acids are	
	converted to succinyl CoA, two amino acids are degraded to oxaloacetate	
36	Biosynthesis of amino acids: α -ketoglutarate to glutamine, glutamate,	
	proline and arginine, 3-phosphoglycarate to glycine, serine and cysteine	
37	Three non-essential and six essential amino acids are synthesized from	
	oxaloacetate and pyruvate.	
38	Three amino acids synthesis from PEP and erythrose 4-phosphate, histidine	
	biosynthesis, regulation of amino acids synthesis	
39-40	Sulphur metabolism: sulphur assimilation, transport and reduction, sulphur	
	cycle	

41	Modulation of specific metabolic pathways,
42	Gene silencing by antisense RNA technology
43	Gene activation for enhanced expression coding for important regulatory enzymes
44	Compartmentation of metabolic pathways: Metabolic pathways in
	peroxisomes and glyoxysomes, metabolic pathways operating in mitochondria
45	Compartmentation of glycolytic and glycolgenolytic metabolism.
46-47	Metabolic profiles of major organs and regulation of metabolic pathways: Organ specialization and metabolic integration (liver, adipose tissue, skeletal muscles, brain, blood)
48	Regulation of metabolism

BIOCHEM 503 ENZYMOLOGY 2+1

Theory:

UNIT I

Introduction and historic perspective, Enzyme nomenclature and classification, enzyme compartmentalization in cell organelles, isolation and purification of enzymes, measurement of enzyme activity. ribozymes, isozymes, abzymes,

UNIT II

Enzyme structure, enzyme specificity, active site, active site mapping, mechanism of enzyme catalysis. cofactors, coenzymes- their structure and role.

UNIT III

Enzyme kinetics, enzyme inhibition and activation, multienzyme complexes, allosteric enzymes and their kinetics, regulation of enzyme activity.

UNIT IV

Isolation and purification of enzymes, Applications of enzymes in chemical and food industry, enzyme immobilization, biosensors and clinical applications of enzymes.

Practical:

Enzyme assay by taking any model enzyme like alpha-amylase or acid phosphatase, isolation and purification of any model enzyme like alpha amylase or acid phosphatase, study of the effect of enzyme and substrate concentrations and determination of Km and Vmax, determination of pH 32 and temperature optima and effect of various inhibitors, determination of the pH and temperature stability of enzyme.

Suggested Readings:

Bergmeyer HU. 1983. *Methods of Enzymatic Analysis*. Vol. II. Verlag Chemie, Academic Press.

Dixon M, Webb EC, Thorne CJR & Tipton KF. 1979. *Enzymes*. 3rd Ed. Longman. Maragoni AG. 2003. *Enzyme Kinetics - A Modern Approach*. John Wiley.

Palmer T. 2001. *Enzymes: Biochemistry, Biotechnology and Clinical Chemistry*. 5th Ed. Horwood Publ.

Price NC & Stevens L. 2003. Fundamentals of Enzymology. Oxford Univ. Press.

Wilson K & Walker J. (Eds.). 2000. *Principles and Techniques of Practical Biochemistry*. 5th Ed. Cambridge Univ. Press.

Thimmaiah SK, 1999. Standard Methods of Biochemical Analysis, Kalyani Publication, New Delhi.

Voet D, Voet JG & Pratt CW. 2007. Fundamentals of Biochemistry. John Wiley.

BIOCHEM 503 ENZYMOLOGY 2+1

Sr.	Name of the topics	No of	Weightage
No.		Lecture	(%)
1	History, importance and scope of enzymes	2	5
2	Enzyme nomenclature, classification and	2	5
	compartmentalization in cell organelles		
3	Basic principles of enzyme isolation, purification and	3	10
	measurement of enzyme activities		
4	Enzyme structure, specificity and concept of active site	2	5
5	Concept of free energy, transition state, activation	2	5
	energy in relation to enzymatic catalysis		
6	Concept of cofactors, prosthetic group, their structures	2	10
	and functions		
7	Enzyme kinetics: Michaleis- Menten Equation,	3	12
	Lineweaver- Burk plot, Vmax and its significance.		
8	Enzyme inhibition: competitive non-competitive, un-	3	10
	competitive and irreversible inhibitions		
9	Multienzyme systems and complexes and regulation	2	5
	of their activities		
10	Allosterc enzymes, kinetics and their regulation	2	12
11	Regulation of enzyme activity	2	5
12	Meaning of isozymes, abzymes, ribozymes and their	2	4
	importance		
13	Applications of enzymes in agriculture, food industry,	2	5
	medicine and chemical industry		
14	Enzyme immobilization: methods, advantages and	2	5
	disadvantages		
15	Biosensors and its applications	1	2
	Total	32	100

Teaching Schedule (Theory)

BIOCHEM 503 ENZYMOLOGY 2+1

Lecture	Name of the topics	
No.		
1	Historical development in the field of enzymology	
2	Importance and scope of enzymes	
3	Enzyme nomenclature and classification	
4	Compartmentalization of enzymes in cell organelles	
5	Principles of enzyme isolation and purification	
6	Measurement of enzyme activity	
7	Enzyme structure stability and specificity	
8	Concept of active site of an enzyme	
9	Orientation of enzyme and enzyme activity	
10	Basic principles of thermodynamics and concept of free energy	
10	Transition state and activation energy in relation to enzymatic catalysis	
11	Enzyme co-factors: meaning, types and their functions	
12	Enzyme prosthetic groups, co-enzymes: structure and functions	
13	Enzyme kinetics: Michaleis- Menten Equation,	
14	Enzyme kinetics: Lineweaver Burk Plot, Lineweaver Equation	
15	Km, Vmax and their significance	
16	Irreversible enzyme inhibition: meaning, type and example	
17	Reversible enzyme inhibition: meaning, type and example	
18	Multienzyme systems and complexes	
19	Regulation of multienzyme activities	
20	Allosteric enzymes : Meaning and their kinetics	
21	Regulation of allosteric enzymes	
22	Meaning and importance of isozymes, ribozymes	
23	Meaning and importance of abzymes	
24	Applications of enzymes in food, agriculture and medicines	
25	Meaning, importance of enzyme immobilization	
26	Applications of immobilized enzymes	
27	Methods of enzyme immobilization, merits and demerits	
28	Biosensors: meaning and its applications	
29	Clinical applications of enzymes	

BIOCHEM 503 ENZYMOLOGY 2+1

Practical No.	Name of the topics	
1,2	Isolation and estimation of amylase activity from germinating seeds	
3	Estimation of optimum temperature of amylase enzyme	
4	Estimation of optimum pH of amylase enzyme	
5	Estimation of V max of amylase enzyme	
6	Estimation of Km value for amylase enzyme	
7,8	Isolation and estimation of polyphenol oxidase activity	
9,10	Isolation and estimation of peroxidase activity	
11,12	Isolation and estimation of alkaline phosphatase from sugar cane juice	
13.14	Isolation and estimation of acid phosphatase from sugar cane juice	
15,16	Isolation and estimation of P5CS activity from stressed seedlings	

Practical

BIOCHEM 504 MOLECULAR BIOLOGY 2+1

Theory:

UNIT I

Historical development of molecular biology, nucleic acids as genetic material, chemistry and structure of DNA and RNA, Genome organization in prokaryotes and eukaryotes, chromatin structure and function.

UNIT II

DNA replication, DNA polymerases, topoisomerases, DNA ligase, reverse transcriptase, repetitive and non-repetitive DNA, satellite DNA; transcription process, RNA editing, RNA processing.

UNIT III

Ribosomes structure and function, organization of ribosomal proteins and RNA genes, genetic code, aminoacyl tRNA synthases' inhibitors of replication, transcription and translation; translation and Post translational modification; nucleases and restriction enzymes, regulation of gene expression in prokaryotes and eukaryotes, molecular mechanism of mutation.

UNIT IV

DNA sequencing, recombinant DNA technology, vectors, isolation of genes, Recombinants vector, selection of recombinants, PCR; general features of replication, transcription, site directed mutagenesis and translation in eukaryotes.

Practical:

Isolation and purification of DNA and RNA from different sources, check of purity of isolated DNA and RNA, restriction fragmentation and separation of oligos by agarose electrophoresis, RAPD analysis of DNA, cDNA synthesis using PCR, Southern and Northern blotting experiments

Suggested Readings:

Adams RLP, Knowler JT & Leader DP. 1992. *The Biochemistry of the Nucleic Acids*. 11th Ed. Chapman & Hall.

Alberts B, Bray D, Lewis J, Raff M, Roberts K & Watson JD 2006. *Molecular Biology of the Cell*. 6th Ed. Garland Publ.

Blackburn GM & Gait MJ. 1996. *Nucleic Acids in Chemistry and Biology*. 2nd Ed. Oxford University Press.

Freifelder D & Malacinski GM. 1996. *Essentials of Molecular Biology*. 3rd Ed. Panima.

Glick BR & Pasternak JJ. 1994. *Molecular Biology: Principles and Applications of Recombinant DNA Technology*. ASM Press.

Lewin B. 2007. Genes IX. Oxford University Press.

Lodish H, Berk A, Zipursky SA, Matsudaira P, Baltimore D & Darnell J. 1999. *Molecular Cell Biology*. WH Freeman.

Old RW & Primrose SB. 1989. *Principles of Gene Manipulation: An Introduction to Genetic Engineering*. 4th Ed. Blackwell Scientific Publ.

Sambrook J & Russel DW. 2001. *Molecular Cloning: A Laboratory Manual*. Vols. I-III. Cold Spring Harbor.

Voet D, Voet JG & Pratt CW. 2007. Fundamentals of Biochemistry. John Wiley.

BIOCHEM 503 MOLECULAR BIOLOGY 2+1

Teaching Schedule (Theory)

Sr.	Name of the topic	No of	Weightage
No.		Lecture	(%)
1	Historical development of molecular biology-nucleic	2	5
	acids as genetic material		
2	Chemistry and structure of DNA and RNA	3	10
3	Genome organization in prokaryotes and eukaryotes,	3	10
	chromatin structure and function		
4	DNA replication, DNA polymerase, topoisomerase,	3	15
	DNA ligase, reverse transcriptase, repetitive and non-		
	repetitive DNA, satellite DNA		
5	Transcription, RNA editing and RNA processing	2	10
6	Ribosome- structure, function and organization	1	5
7	Genetic code, mechanism of protein biosynthesis in	3	10
	prokaryotes and eukaryotes and post translational		
	modifications in eukaryotes		
8	Inhibitors of replication, transcription and translation	2	5
9	Gene expression in prokaryotes and eukaryotes,	3	10

10	Restriction enzymes and vectors	2	5
11	Recombinant DNA technology, recombinant vectors	3	5
	and selection of recombinants		
12	PCR	1	2
13	Molecular mechanism of mutation and site directed	2	3
	mutagenesis		
14	DNA sequencing	2	5
	Total	32	100

BIOCHEM 504 MOLECULAR BIOLOGY

2+1

Lecture	Name of the topics	
No.		
1	Historical development of molecular biology	
2	Nucleic acids as genetic material	
3	Structures of nitrogen bases, nucleoside, nucleotides-chemistry of nucleic	
	acids and hydrogen bonding	
4	Structure of DNA, Watson –Crick model	
5	Types of RNA- differences between prokaryotes and eukaryotes, function of RNA	
6	Genome organization in prokaryotes	
7	Chromatin structure	
8	Genome organization in eukaryotes	
9	DNA replication, semi conservative mechanism	
10	Enzymatic mechanisms of DNA replication, role of various enzymes during	
	DNA replication	
11	Repetitive and non-repetitive DNA	
12	Transcription, RNA polymerase structure, functions and steps	
13	Regulation of transcription, RNA editing and processing	
14	Ribosome- types, structure, function and organization of ribosomal proteins	
15	Genetic code- properties and codon assignment, amino acyl- tRNA synthetase (Wobble hypothesis)	
16	Protein biosynthesis in prokaryotes	
17	Protein biosynthesis in eukaryotes	
18	Post translational modifications	
19	Inhibitors of DNA replication and transcription	
20	Inhibitors of translation in prokaryotes and eukaryotes	
21	Operon- system of positive and negative control, indication and repression	
22	Lactose, arabinose and galactose operon	
23	Tryptophan operon and attenuation control of gene regulation in eukaryotes,	
24	Restriction enzymes, types, specificity, enzyme units, restriction modification system	
25	Vectors- plasmids, cosmids and bacteriophages	

26	Basic steps in recombinant DNA technology	
27	Isolation of genes and cloning strategies	
28	Recombinant plasmids and methods for selection of recombinants	
29	Polymerase chain reaction	
30	Mutation- types, transition, transversion, point mutation, chromosomal abberation	
31	Site directed mulagenesis	
32	DNA sequencing methods	

BIOCHEM 504 MOLECULAR BIOLOGY 2+1

Practical

Practical	Name of the topic	
No.		
1,2	Isolation and purification of plant genomic DNA	
3-5	Isolation and purification of RNA from plant tissues and other sources	
6-7	Quantification of plant genomic DNA, testing purity of isolated plant genomic DNA by agarose gel electrophoresis	
8-11	Purification and restriction enzyme analysis of DNA, agarose electrophoresis and staining of gel, visualization of gel under UV transilluminator, Southern blotting	
12,13	RAPD analysis of DNA by random dacamer primers	
14,15	Isolation of mRNA, cDNA synthesis using PCR	
16	Northern blotting of RNA and Western blotting of proteins	

BIOCHEM 505 TECHNIQUES IN BIOCHEMISTRY 1+2

Theory

UNIT I

Chromatographic and electrophoretic methods of separation, Principles and applications of Paper, Thin layer & HPTLC, Gas, Gas-liquid, Liquid chromatography, HPLC and FPLC; Paper and gel electrophoresis, Different variants of polyacrylamide gel electrophoresis PAGE) like native and SDS-PAGE, 2D-PAGE, capillary electrophoresis.

UNIT II

Spectrophotometry: Principles and applications UV-Visible, Fluorescence, IR and FTIR, Raman, NMR and FTNMR, ESR and X-Ray spectroscopy.

UNIT III

Hydrodyanmic methods of separation of biomolecules such as viscosity and sedimentation- their principles, variants and applications.

UNIT IV

Tracer techniques in biology: Concept of radioactivity, radioactivity counting methods with principles of different types of counters, concept of α , β and γ emitters, scintillation counters, γ -ray spectrometers, autoradiography, applications of radioactive tracers in biology, principles and applications of phosphor imager.

Practical:

Determination of absorption maxima of some important chemicals from their absorption spectra, estimation of biomolecule using spectrophotometer, Separation of carbohydrates and amino acids by paper chromatography, Separation of lipids by thin layer and column chromatography, Separation of proteins by ion exchange and gel filtration chromatography, Electrophoretic techniques to separate proteins and nucleic acids ,Centrifugation- Cell fractionation, Application of GLC, 34 HPLC, FPLC in separation of biomolecules, Use of radioisotopes in metabolic studies.

Suggested Readings:

Clark JM. 1977. Experimental Biochemistry. 2nd Ed. WH Freeman.

Sawhney SK & Singh R. 2000. *Introductory Practical Biochemistry*. 2nd Ed. Narosa. Willard M, Merritt LL & Dean JA.1981. *Instrumental Methods of Analysis*. 4th Ed. Van Nostrand.

William BL & Wilson K. 1975. *Principles and Techniques of Practical Biochemistry*. Edward Arnold.

Wilson K, Walker J & Walker JM. 2005. *Principles and Techniques of Practical Biochemistry*. Cambridge Univ. Press.

Thimmaiah SK, 1999. Standard Methods of Biochemical Analysis, Kalyani Publication, New Delhi.

BIOCHEM: 505 TECHNIQUES IN BIOCHEMISTRY 1+2

Sr.	Name of the topic	No of	Weightage
No.		Lecture	(%)
1	Spectrophotometer-laws, principles and applications of	1	10
	UV-Visible spectrophotometer		
2	Florescence, IR and FTIR	1	6
3	Raman, NMR and FINMR	1	6
4	ESR and X-ray spectroscopy	1	6
5	Hydrodynamic method of separation of biomolecules	1	8
	such as viscosity, sedimentation-their principles,		
	variants and applications		
6	Chromatographic techniques, classification, principles	1	8
	and application of paper and thin layer		
7	GLC	1	6
8	HPLC and FPLC	2	8

Teaching Schedule (Theory)

9	Paper and gel electrophoresis, PAGE	1	9
10	SDS-PAGE,2D-PAGE and capillary electrophoresis	1	9
11	Tracer techniques in biology-Concepts of radioactivity, radio activity counting, methods with principles of different types of counters	2	6
12	Concept of $\alpha \beta \& \gamma$ emitters ,scintillation counters and gamma ray spectrophotometers	1	6
13	Auto radiography, applications of radioactive tracers in biology	1	6
14	Principles and applications of phosphor imager	1	6
	Total	16	100

BIOCHEM 505 TECHNIQUES IN BIOCHEMISTRY 1+2

Lecture	Name of the topic	
No.		
1	Laws of spectrophotometry, Beer- Lamberts law, UV spectrophotometry,	
	principles of instrumentation and applications	
2	Spectrophotometry : principles and instrumentation, infrared	
	spectrophotometer: principles of instrumentation, FTIR	
3	Raman effect: NMR, FINMR	
4	ESR (Electro spin resonance) spectrophotometry, applications, X-ray	
	spectroscopy	
5	Hydrodynamic methods of separation of biomolecules : viscosity,	
	principles and application, sedimentation, centrifugation, principles and	
	types of centrifugations	
6-7	Chromatography: principles and classification, paper chromatography:	
	principle and application, thin layer chromatograph and HPTLC: principles	
-	and applications	
8	Ion exchange chromatography: principle, instrumentation and application.	
	Gel filtration chromatography: principle, instrumentation and applications.	
0	Affinity chromatography: principle, instrumentation and applications.	
9	GLC: principle, instrumentation and applications	
10	HPLC and FPLC : principle, instrumentation and applications	
11	Paper and gel electrophoresis, PAGE: principle, instrumentation and applications	
12	SDS-PAGE: principle, instrumentation and applications, 2D-PAGE	
	:principle, instrumentation and application and capillary electrophoresis:	
	principle, instrumentation and application	
13-14	Tracer techniques in biology-Concept of radioactivity- atomic stability and	
	radiation. Types of radioactive decay, rate of radio -active decay, units of	
	radioactivity, radio activity counting methods: absolute and relative	
	counting, methods based on gas ionization, excitation, exposure of	
	photographic emulsions, principles of different types of counters	
15	Autoradiography: gel exposed to x- ray film, x- ray film development,	
1.5	applications of radioactive tracers in biology	
16	Principles and applications of phosphor imager	

BIOCHEM 505 TECHNIQUES IN BIOCHEMISTRY 1+2 Practical

Sr. No	Name of the practical	No. of practical classes	Weightage (%)
1	Centrifugation- cell fragmentation	2	8
2	Determination of absorption maxima of some important chemicals	3	12
3	Estimation of biomolecules using spectrophotometer	2	8
4	Separation of amino acids by paper chromatography	2	6
5	Separation of amino acids by TLC	2	6
6	Protein extraction: ammonium sulphate precipitation and separation of proteins by ion exchange and gel filtration chromatography	6	14
7	Separation of proteins by PAGE	4	12
8	Isolation and separation of nucleic acids on agarose gel	4	12
9	Fatty acids separation by GLC	3	12
10	Plant metabolite separation and estimation by HPLC	4	10
	Total	32	100

BIOCHEM 507 PLANT BIOCHEMISTRY

3+0

Theory:

UNIT I

Scope and importance of biochemistry in Agriculture, Plant cell organelles and their separation, structure and function of cell organelle. Photosynthetic pigments in relation to their functions, photosynthesis, C3, C4 and CAM pathways, photorespiration.

UNIT II

Sucrose-starch interconversion, biosynthesis of structural carbohydrates, storage proteins and lipids. Biochemistry of nitrogen fixation and nitrate assimilation, sulphate reduction and incorporation of sulphur in to amino acids.

UNIT III

Biochemistry of seed germination and development, Biochemistry of fruit ripening, phytohormones and their mode of action, signal transduction.

UNIT IV

Biochemistry and significance of secondary metabolites-cyanogenic glycosides, glucosinolates, phenolic compounds, terpenoids, alkaloids, plant defense system.

Suggested Readings:

Buchanan BB, Gruissem W & Jones RL. 2000. *Biochemistry and Molecular Biology* of *Plants*. 2nd Ed. John Wiley.

Dey PM & Harborne JB. 1997. Plant Biochemistry. Academic Press.

Goodwin TW & Mercer EI. 1983. Introduction to Plant Biochemistry. Pergamon Press.

Heldt HS. 1997. *Plant Biochemistry and Molecular Biology*. Oxford Univ. Press. Lea PJ & Leegood R C. 1993. *Plant Biochemistry and Molecular Biology*. 2nd Ed. John Wiley

Sr. No.	Name of the topic	No of Lectures	Weightage (%)
1	Scope and importance of biochemistry in agriculture	2	3
2	Plant cell organelles : separation, structure & functions	2	4
3	Photosynthetic pigments in relation to their functions	2	4
4	Photosynthesis : Light reaction, Z- scheme water splitting complex, photosystems,	3	7
5	Carbon reduction and assimilation : Kinetics of Rubisco	3	7
6	C ₃ , C ₄ and CAM metabolism	3	10
7	Photorespiration: Reactions & significance	1	3
8	Sucrose-starch interconversion	2	5
9	Biosynthesis of structural carbohydrates	2	5
10	Biosynthesis of storage proteins & lipids	2	3
11	Biochemistry of nitrogen fixation	4	7
12	Biochemistry of nitrate assimilation	3	5
13	Sulphate reduction and assimilation	3	5
14	Biochemistry of seed germination and development	2	5
15	Biochemistry of fruit ripening	2	5
16	Phytohormones and their mode of action	4	7
17	Signal transduction	3	5
18	Biochemistry and significance of secondary metabolites	3	5
19.	Plant defense system	2	5
	Total	48	100

Teaching Schedule

BIOCHEM 507 PLANT BIOCHEMISTRY

3+0

Lesson Plan

Lecture No.	Name of the topic		
1	Historical developments in the field of plant biochemistry		
2	Scope and importance of biochemistry in agriculture		
3	Structure and functions of plant cell organelles		
4	Methods of cell organelles separation		
5	Photosynthetic absorption spectra, mechanism of light absorption		
6	Various photosynthetic pigments : absorption maxima, LHCs and photosystems		
7	Light reactions of photosynthesis in photosynthetic bacteria, algae and higher plants		
8	Z- scheme of photosynthesis, coordination of PSI and PSII		
9	Water splitting complex and mechanism of ATP synthesis		
10	Photosynthetic carbon reduction cycle, stages of CO ₂ assimilation		
11	Kinetic mechanism of CO ₂ fixation with Rubisco		
12	Reduction phase in photosynthesis and regeneration of acceptor molecule		
13	C ₃ and C ₄ metabolism : significance and detail enzymatic mechanism		
14	CAM metabolism and physiological significance		
15	Photorespiration : enzymatic reactions and metabolic significance		
16	Biosynthesis of sucrose and starch in plants		
17	Regulation of sucrose-starch interconversion		
18	Biosynthesis of storage polysaccharides		
19.	Biosynthesis of structural polysaccharides		
20.	Biosynthesis of storage proteins		
21.	Biosynthesis of storage lipids		
22.	Overview of nitrogen cycle		
23.	Free living nitrogen fixers and enzymes involved in N ₂ fixation		
24.	Structure of nitrogenase complex and coordination between components, H_2 evolution during dinitrogen fixation		
25.	Symbiotic nitrogen fixation		
26.	Mechanism of nitrate uptake and reduction and regulation of nitrate reduction in higher plants		
27.	Reactions of ammonia assimilation		
28.	Mechanism of sulphate reduction and enzymatic mechanism of sulphate assimilation		
29.	Incorporation of reduced sulphur in plants and regulation of sulphur assimilation		
30.	Biochemical changes during seed germination		
31.	Biochemical changes during plant development		
32.	Biochemical mechanism of fruit ripening		
33.	Role of ethylene and other enzymes during ripening		
34.	Phytohormones: classification and physiological functions		

35.	Auxins, Cytokinins
36.	Gibberelins
37.	ABA, ethylene and other plant growth regulators
38.	Introduction to signal transduction and perception in plant development
39.	Mechanisms of signal transduction in plants
40.	Introductions and significance of secondary plant metabolites
41.	Structure and classification of secondary plant products
42.	Secondary metabolites of major importance
43.	Plant defense systems
44.	Biochemical and molecular regulation of plant defense system

BIOCHEM 510 CARBONS AND NITROGEN METABOLISM 2+1

Theory:

UNIT I

Carbon metabolism: Synthesis of sucrose, Regulation of sucrose phosphate synthesis, Transport of sucrose, phloem loading and unloading, synthesis of starch in leaves and seeds, concept of transitory starch.

UNIT II

Synthesis of fructose, galactomannans, raffinose series oligosaccharides and trehalose.

UNIT III

Nitrogen cycle- Biochemistry of nitrate assimilation and its regulation, GS/GOGAT and GDH pathway, ureides and amides as nitrogen transport compounds, chemoautotrophy in denitrifying bacteria.

UNIT IV

Biological nitrogen fixation; structure function and regulation of nitrogenase; nif genes and their regulation; biochemical basis of legume- Rhizobium symbiosis, genes involved in synthesis.

Practical:

Estimation of nitrite content, Estimation of protein by Lowry's method, Estimation of starch, Estimation of nitrate content by hydrazine sulphate reduction method, *in vivo* assay of nitrate reductase activity, *in vitro* assay of nitrate reductase activity, *in vitro* assay of nitrite reductase activity, *in vitro* assay of glutamine synthetase activity, *in vitro* assay of glutamate synthase and glutamate dehydrogenase activity, Estimation of ureides and amides, Assay of nitrogenase activity by acetylene reduction method, Estimation of hydrogen evolution by legume nodules.

Suggested Readings:

Beevers L. 1979. Nitrogen Metabolism in Plants. Gulab Vazirani for Arnold-Heinermann.Bergersen FJ. (Ed.). 1980. Methods for Evaluating Biological Nitrogen Fixation.John Wiley & Sons. 38

Bray CM. 1983. Nitrogen Metabolism in Plants. Longman.

Buchanan BB, Gruissem W & James RL. (Eds.). 2000. *Biochemistry and Molecular Biology of Plants*. American Society of Plant Physiologists.

Mehta SL, Lodha ML & Sane PV. (Eds.). 1993. Recent Advances in Plant Biochemistry. ICAR.

Thimmaiah SK, 1999. Standard Methods of Biochemical Analysis, Kalyani Publication,

New Delhi.

BIOCHEM 510 CARBONS AND NITROGEN METABOLISM 2+1

Sr. No.	Name of the topics	No of Lecture	Weightage (%)
1	Global climate change and its effects on plant photosynthesis	3	5
2	Carbon metabolism in plants : synthesis of sucrose, regulation of sucrose phosphate synthesis	3	10
3	Transport of sucrose, phloem loading and unloading	2	5
4	Synthesis of starch in leaves and regulation of sucrose- starch introversion	2	10
5	Synthesis of fructose, galactomannans, raffinose series of oligosaccharides	2	5
6	Biochemistry of nitrate assimilation and its regulation	4	15
7	Ureides and amides as nitrogen transport compounds	1	5
8	Mitochondrial metabolism in relation to carbon and nitrogen assimilation	4	15
9	Significance of alternative respiration and photorespiration in plant metabolism	2	5
10	Chemoautotrophy in denitrifying bacteria	1	5
11	Biological nitrogen fixation : structure, function and regulation of nitrogenase	3	10
12	nif genes and their regulation	2	5
13	Legume – Rhizobium symbiosis	3	5
	Total	32	100

Teaching Schedule

BIOCHEM 510 CARBONS AND NITROGEN METABOLISM

2+1

Lecture	Name of the topic		
No.			
1	Influence of environmental factors on crop growth and productivity		
2	Present scenario of global climate change and their causes on plant		
	metabolism		
3	Influence of global climate change on photosynthesis		
4	Metabolic manipulations in plants to cope up with future climate change		

Lesson Plan

5	Introduction to carbon metabolism	
6,7	Enzymatic mechanism of sucrose synthesis	
8.	Regulation of sucrose synthesis in plants	
9,10	Transport of sucrose in plants	
11.	Regulation phloem loading and unloading	
12	Enzymatic mechanism of starch biosynthesis in plants	
13	Regulation of starch biosynthesis in higher plants	
14	Sucrose – starch interconversion and regulation	
15.	Mechanism of sucrose-starch interconversion during different hours of the day	
16.	Synthesis of fructose and galactomannanas	
17	Synthesis of raffinose family of oligosaccharides	
18	Mechanism of nitrate uptake and reduction and regulation of nitrate reduction in higher plants	
19.	Pathway of ammonia assimilation	
20.	Transcriptional and post translational regulation of nitrate reduction and assimilation	
21.	Nitrogen transport compounds	
21.	Ureides and amides	
22.	Free living nitrogen fixers and enzymes involved in N ₂ fixation	
23.	Structure of nitrogenase complex and coordination between components, H_2 evolution during dinitrogen fixation	
24.	Symbiotic nitrogen fixation	
25.	Mechanism of sulphate reduction and enzymatic mechanism of sulphate assimilation	
26.	Incorporation of reduced sulphur in plants and regulation of sulphur assimilation	
27.	Biochemical changes during seed germination, plant development and fruit ripening, enzymes involved	
28.	Phytohormones: classification and physiological functions	
29.	Auxins, cytokinins, gibberellins, ABA, ethylene and other plant growth regulators	
30.	Introduction to signal transduction and perception in plant development mechanisms of signal transduction in plants	
31.	Introductions and significance of secondary plant metabolites, structure and classification of secondary plant products, secondary metabolites of major importance	
32.	Plant defense systems : Biochemical and molecular regulation	

BIOCHEM 510 CARBONS AND NITROGEN METABOLISM 2+1

Practical

Practical No.	Name of the topics
1	Estimation of nitrite content by diazotization reaction from the given sample
2.	Estimation of proteins by Lowry et al. (1951) method
3	Estimation of starch by anthrone method
4	Estimation of nitrate content by hydrazine sulphate reduction method
5	In vivo assay of nitrate reductase from plant tissues
6,7	In vitro assay of nitrate reductase from plant tissues
8	In vitro assay of nitrite reductase from plant tissues
9	In vitro assay of glutamine synthetase from plant tissues
10	In vitro assay of glutamate synthase from plant tissues
11	In vitro assay of glutamate dehydrogenase from plant tissues
12,13	Estimation of allantion and allantoic acid from legumes
14	Determination of asparagine synthetase activity from plant tissues
15	Assay of nitrogenase activity by acetylene reduction method by GLC
16	Estimation of hydrogen evolution by legume nodules

Seminar (01 credit)				
1	BIOCHEM 591	MASTER'S SEMINAR	1+0=1	
		Total	1+0=1	
	Master's Research (20 credits)			
1	BIOCHEM 599	MASTER'S RESEARCH	0+20=20	